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Summary
Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat
tolerance in maize. The recombinant precursor of this protein, pre-EF-Tu, has been
found to exhibit chaperone activity and protect heat-labile proteins, such as citrate
synthase and malate dehydrogenase, from thermal aggregation. Chloroplast EF-Tu is
highly conserved and it is possible that the chaperone activity of this protein is not
species-specific. In this study, we investigated the effect of native wheat pre-EF-Tu
on thermal aggregation of rubisco activase. Additionally, we investigated the effect
of native and recombinant maize pre-EF-Tu on activase aggregation. Activase was
chosen because it displays an exceptional sensitivity to thermal aggregation and
constrains photosynthesis at high temperature. The native precursors of both wheat
and maize EF-Tu displayed chaperone activity, as shown by the capacity of both
proteins to reduce thermal aggregation of rubisco activase in vitro. Similarly, the
recombinant maize pre-EF-Tu protected activase from thermal aggregation. This is
the first report on chaperone activity of native pre-EF-Tu and the first evidence for
thermal protection of a photosynthetic enzyme by this putative chaperone. The
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results are consistent with the hypothesis that chloroplast EF-Tu plays a functional
role in heat tolerance by acting as a molecular chaperone.
& 2007 Elsevier GmbH. All rights reserved.
Introduction

High temperatures or heat stress adversely
affects plant cells, causing denaturation and
aggregation of most proteins (Levitt, 1980) and
damage to cellular membranes (Armond et al.,
1980; Levitt, 1980; Ristic and Cass, 1992, 1993).
Heat stress also affects cell metabolism, causing
changes in the rates of many biochemical reactions
(Berry and Björkman, 1980; Levitt, 1980). High
temperatures reduce photosystem II activity,
photophosphorylation, photosynthetic enzyme ac-
tivity, dark respiration (Berry and Björkman, 1980),
protein synthesis, and ion uptake (Levitt, 1980). Of
all the metabolic processes that are affected by
heat stress, the one that appears to be most
sensitive to inhibition is CO2 fixation (Berry and
Björkman, 1980).

The inhibition of CO2 fixation during heat stress is
primarily caused by inactivation of rubisco activase
(Feller et al., 1998; Salvucci et al., 2001). Rubisco
activase is a nuclear-encoded, soluble chloroplast
enzyme that regulates the activity of rubisco
(Andrews, 1996; Portis, 2002; Spreitzer and Salvucci,
2002). In most species studied, activase is found in
two isoforms, the longer a (43–46 kDa) and the
shorter b (41–42kDa), both of which are capable of
promoting rubisco activation (Shen et al., 1991).
Activase is highly sensitive to heat stress, as it loses
its activity at moderately high temperatures (Crafts-
Brandner et al., 1997; Feller et al., 1998). Loss of
activase activity during heat stress is attributed to an
exceptional sensitivity of this protein to heat
denaturation and aggregation (Salvucci et al., 2001).

Plants cells have evolved several mechanisms
that enable them to alleviate the negative effects
of heat stress (Levitt, 1980). One such mechanism
is the synthesis of heat-shock proteins (HSPs)
(Vierling, 1991; Schöffl et al., 1998; Feder and
Hofmann, 1999; Maestri et al., 2002). HSPs play a
central role in heat tolerance by acting as
molecular chaperones; that is, they bind and
stabilize heat-labile proteins, protecting them from
thermal aggregation (Vierling, 1991; Hendrick and
Hartl, 1993; Feder and Hofmann, 1999; Lee and
Vierling, 2000; Basha et al., 2004).

Studies have shown that some other proteins, in
addition to HSPs, play a role in heat tolerance by
acting as molecular chaperones (Caldas et al.,
1998, 2000; Rao et al., 2004). Examples include the
prokaryotic protein synthesis initiation factor IF2,
protein synthesis elongation factors EF-G (Caldas
et al., 2000) and EF-Tu (Caldas et al., 1998; Malki
et al., 2002), and the mammalian mitochondrial
translation elongation factor, EF-Tu-mt (Suzuki
et al., 2007). These proteins perform a chaperone
function by interacting with unfolded and dena-
tured proteins, thereby protecting them from
thermal aggregation.

Recent studies have suggested that maize (Zea
mays) chloroplast protein synthesis elongation
factor, EF-Tu, plays a role in heat tolerance (Ristic
et al., 2004; Momcilovic and Ristic, 2004) by acting
as a molecular chaperone (Rao et al., 2004). The
recombinant precursor of this protein, pre-EF-Tu,
was found to protect heat-labile citrate synthase
and malate dehydrogenase from thermal aggrega-
tion (Rao et al., 2004). Chloroplast EF-Tu is highly
conserved (Baldauf and Palmer, 1990; Ursin et al.,
1993; Sugita et al., 1994; Maurer et al., 1996; Lee
et al., 1997; Bhadula et al., 2001), and it is possible
that EF-Tu from other species also displays chaper-
one activity. In this study, we examined the effect
of native pre-EF-Tu from wheat (Triticum aestivum)
on thermal aggregation of rubisco activase. We also
examined the influence of native and recombinant
maize pre-EF-Tu on activase aggregation. Rubisco
activase was chosen because it is the major protein
that denatures/aggregates (Salvucci et al., 2001)
and constrains photosynthesis at high temperature
(Crafts-Brandner and Salvucci, 2000).
Materials and methods

Materials

We used recombinant maize (Z. mays L.) rubisco
activase, the native wheat (T. aestivum L.) and maize
precursor of chloroplast EF-Tu (pre-EF-Tu), and the
recombinant proteins that display chaperone activity,
maize pre-EF-Tu (Rao et al., 2004), and Escherichia coli
DnaK (Diamant et al., 2000). Recombinant maize rubisco
activase was expressed in, and purified from, E. coli BL-
21 (DE3). Native wheat and maize pre-EF-Tu were
isolated and purified from the leaf tissue of spring wheat
cultivar Seri-82 and maize line B-73, respectively.
Recombinant maize pre-EF-Tu was previously isolated
and purified from E. coli strain DH5a (Rao et al., 2004),
and in the current study we purified additional amounts
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of this protein. Recombinant DnaK was purchased from
Nventa Biopharmaceuticals (San Diego, CA).

Cloning and expression of rubisco activase from maize

A full-length cDNA encoding maize ribulose 1,5-bispho-
sphate carboxylase/oxygenase activase (Zmrca1, Gen-
Bank accession no. AF084478) was synthesized using
the ThermoScript reverse transcription (RT-PCR) system
according to the manufacturer’s instructions (Invitrogen
Life Technologies, Carlsbad, CA). RNA was isolated from
frozen leaf tissue of 1-week-old maize plants (var. Pioneer
33A14) sampled at the beginning of the photoperiod as
described by Carpenter and Simon (1998). RT-PCR was
performed using gene-specific forward (50-TACCATGGC
CAAGGAGGTGGAC) and reverse (50-TTTCTACTTGAAGAAG
GAGC) primers. PCR products were ligated into the
pCR2.1 TOPO vector (Invitrogen, Carlsbad, CA) for
sequencing, which was carried out using the M13 forward
(50-CTGGCCGTCGTTTTAC) and reverse (50-GTCATAG
CTGTTTCCTG) primers. Resulting Zmrca1 sequences were
aligned and analyzed using the Vector NTI sequence
analysis software (InforMax, North Bethesda, MD).

To confirm its activity as activase, a region of the cDNA
encoding the putative mature Zmrca1 protein was sub-
cloned from pCR2.1 TOPO vector into the bacterial
expression vector pET23d(+) (Invitrogen, Carlsbad, CA),
using restriction enzymes Nco1 and EcoR1 and T4 DNA
ligase as described by the supplier (Promega, Madison,
WI). The recombinant plasmid was transformed into
NovaBlue and BL-21 Star (pLysS) E. coli cells (Invitrogen,
Carlsbad, CA) for plasmid propagation and protein
expression, respectively. Recombinant Zmrca1 was ex-
pressed and purified according to Salvucci et al. (2003),
and a spectrophotometric assay (Salvucci, 1992) verified
the activity of this enzyme.

Purification of wheat and maize pre-EF-Tu from leaf
tissue

Leaves from 20-d-old wheat (cultivar Seri-82) and
maize (line B-73) plants grown in a greenhouse were
collected, frozen in liquid nitrogen, and stored at �80 1C.
Total soluble proteins were extracted using an extraction
buffer containing 50mM Tris–HCl (pH 8.0), 2mM EDTA,
10% glycerol, and 1% protease inhibitor cocktail (v/v,
Sigma). The homogenates were centrifuged at 12,000g
for 20min. The supernatants were transferred to new
tubes and stored at �80 1C. Fifteen milliliter protein
extracts were thawed on ice, and concentrated to
approximately 1.5mL using Centricon Plus 20 PL-30 spin
columns (Millipore Corp., Bedford, MD) according to the
manufacturer’s instructions. The concentrated protein
extracts were transferred to a 2mL tube and incubated
with anti-maize EF-Tu antibody (100 mL) (Bhadula et al.,
2001) at 4 1C overnight. Two hundred microliter Immu-
noPure Immobilized protein A (Pierce Biotechnology,
Rockford, IL) was then added, and the mixture was
incubated at room temperature for 2 h. The conjugates
of chloroplast EF-Tu, anti-EF-Tu antibody, and the
immobilized protein A were precipitated by centrifuga-
tion at 2500g at room temperature for 3min, and washed
using an immunoprecipitation buffer containing 25mM
Tris–HCl (pH 7.2). The EF-Tu protein was eluted using the
Elution Buffer (Pierce, Rockford, IL). The eluate was
neutralized with 1M Tris–HCl (pH 8.0) at a ratio of 1:10,
mixed with glycerol (20% final concentration), and stored
at �80 1C until further use. The purified protein was
quantitated using RC DC Protein Assay kit (Bio-Rad,
Hercules, CA). The purity of pre-EF-Tu preparation was
checked using 1-D SDS-PAGE, and the identity was
verified by immunoblot analysis (Rao et al., 2004)
using the antibody against maize EF-Tu (Bhadula et al.,
2001). Mass spectrometry was used to verify the
identity of purified pre-EF-Tu from wheat leaf tissue
(Rao et al., 2004).

One-dimensional SDS-PAGE and immunoblotting

One-dimensional SDS-PAGE of purified proteins was
carried out according to Laemmli (1970). The SDS-PAGE
gels were stained using Coomassie Brilliant Blue R250
(Amersham, Princeton, NJ).

The immunoblot analyses were performed as outlined
by Rao et al. (2004). In separate trials, the purified
proteins (recombinant maize pre-EF-Tu, recombinant
maize rubisco activase, native maize pre-EF-Tu, and
native wheat pre-EF-Tu) were resolved on 10% (w/v)
polyacrylamide gel with SDS, and then transferred to a
PVDF membrane (Bio-Rad, Hercules, CA). The immuno-
blots with purified pre-EF-Tu were probed using a
polyclonal anti-maize EF-Tu antibody (Bhadula et al.,
2001). A previous study has shown that this antibody
cross-reacts with wheat EF-Tu (Ristic et al., 2007). A blot
with purified recombinant maize rubisco activase was
probed using a monospecific polyclonal anti-tobacco
(Nicotiana tabacum L.) activase antibody, which has
been shown to cross-react with maize (Crafts-Brandner
and Salvucci, 2002) and wheat rubisco activases (Feller
et al., 1998).

Chaperone assays

Native wheat and maize pre-EF-Tu were tested for
possible chaperone activity by monitoring thermal aggre-
gation of recombinant maize activase in the presence or
absence of purified wheat or maize pre-EF-Tu as described
by Rao et al. (2004). The chaperone assays were also
conducted using recombinant proteins with known cha-
perone activity, namely maize pre-EF-Tu (Rao et al., 2004)
and E. coli DnaK (Diamant et al., 2000). In separate trials,
activase (0.75mM) was mixed with various increasing
concentrations of purified recombinant maize pre-EF-Tu,
recombinant E. coli DnaK, native maize pre-EF-Tu, and
native wheat pre-EF-Tu (as indicated in Figure 3) in 20mM
Tris–HCl buffer (Rao et al., 2004). Two controls were used:
activase alone and activase mixed with bovine serum
albumin (BSA). Samples were incubated at 25 1C or 48 1C
for 45min in a temperature-controlled micro-multi cell
spectrophotometer (Shimadzu, Japan), and activase
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stability (aggregation) was estimated by monitoring light
scattering at 320nm during incubation (Rao et al., 2004).

In a separate experiment, the effect of recombinant
maize pre-EF-Tu on thermal aggregation of maize
activase was analyzed by examining the solubility of
activase at high temperature. Both activase (0.75 mM)
alone and activase mixed with recombinant maize
pre-EF-Tu (2 mM) were incubated (in Tris–HCl buffer
(Rao et al., 2004); 300 mL total volume) at 25 1C or 48 1C
for 45min. After incubation, the reaction mixture was
centrifuged for 15min at 15,000g (at 4 1C), and the
resulting pellet and supernatant were separated. The
pellet was then resuspended in the volume of
the Tris–HCl buffer (Rao et al., 2004) that was equal to
the volume of the supernatant. The supernatant and the
resuspended pellet were analyzed using one-dimensional
SDS-PAGE as outlined above. Gel was loaded with equal
volumes of protein samples.
Results and discussion

Analysis of purified proteins

Native wheat and native maize pre-EF-Tu were
isolated and purified from leaf tissue of spring
wheat cultivar Seri-82 and maize line B-73.
Recombinant maize pre-EF-Tu and the mature form
of recombinant maize rubisco activase were pur-
ified from E. coli expressing these proteins. One-
dimensional SDS-PAGE analysis of protein prepara-
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Figure 1. One-dimensional SDS-PAGE gels (A) and immunobl
pre-EF-Tu protein was purified from the leaf tissue of 20-d-ol
R250. The immunoblot was probed with maize anti-EF-Tu anti
maize, 1 mg; B: wheat, 5 ng; maize, 15 ng. Arrow indicates pr
tions from wheat and maize leaf tissue and from
E. coli expressing pre-EF-Tu revealed that each
purified protein migrated as a single band with a
molecular mass of 50–51 kDa, as expected for pre-
EF-Tu (Figure 1A and 2A, lane 1). Similar analysis
showed that the rubisco activase purified from
E. coli migrated as a single band with a molecular
mass of 43 kDa, as predicted for this protein
(Figure 2B, lane 1).

Immunoblot analyses of purified proteins corro-
borated the results of one-dimensional SDS-PAGE.
Immunoblots prepared with purified native wheat,
native maize (Figure 1B), and recombinant maize
pre-EF-Tu (Figure 2A, lane 2) showed a single band
of 50–51 kDa. Likewise, the immunoblot of the
purified mature form of maize recombinant acti-
vase showed a band of 43 kDa (Figure 2B, lane 2).
Mass spectrometry verified the identity of purified
native pre-EF-Tu protein from wheat (not shown).

Protective effect of wheat and maize pre-EF-Tu
against thermal aggregation of rubisco activase

Recombinant maize pre-EF-Tu and native wheat
and maize pre-EF-Tu were able to protect rubisco
activase against thermal aggregation in vitro. When
heated at 48 1C, activase began to form insoluble
aggregates, indicated by an increase in relative
light scattering (Figure 3). Activase aggregation,
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ot (B) of purified native wheat and maize pre-EF-Tu. The
d plants. Gels were stained with Coomassie Brilliant Blue
body (Bhadula et al., 2001). Protein load: A: wheat, 4 mg;
e-EF-Tu; St, protein standards.
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Figure 2. One-dimensional SDS-PAGE gels and immuno-
blots of purified maize recombinant pre-EF-Tu (A) and
purified maize recombinant rubisco activase (B). Recom-
binant proteins were purified from E. coli expressing this
protein. Panels A and B, lane 1: gels stained with
Coomassie Brilliant Blue R250; panel A, lane 2: immuno-
blot probed with maize anti-EF-Tu antibody (Bhadula
et al., 2001); panel B, lane 2: immunoblot probed with
anti-tobacco rubisco activase antibody (Feller et al.,
1998). Protein load: A: lane 1, 2 mg; lane 2, 50 ng; B: lane
1, 1.14 mg; lane 2, 40 ng. Arrow indicates purified protein;
St, protein standards.
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however, was significantly reduced in the presence
of various pre-EF-Tu proteins. Recombinant maize
pre-EF-Tu almost completely suppressed activase
Figure 3. Effect of recombinant maize pre-EF-Tu (A),
native maize pre-EF-Tu (B), native wheat pre-EF-Tu (C),
and E. coli DnaK (D) on thermal aggregation of
recombinant maize rubisco activase. In separate trials,
rubisco activase (0.75 mM) was mixed with increasing
concentrations of pre-EF-Tu (EF-Tu). Two controls were
used: rubisco activase alone (-EF-Tu) and rubisco activase
mixed with bovine serum albumin (BSA). Mixtures (150 mL
total volume) were incubated at 48 1C for 45–50min.
During incubation, samples were monitored for their
absorbance at 320 nm, which is indicative of light
scattering due to activase aggregation (Salvucci et al.,
2001). Data are the mean7SE of two independent
experiments. Note that pre-EF-Tu and E. coli DnaK
protected rubisco activase from thermal aggregation.
aggregation at a pre-EF-Tu:activase molar ratio of
2.7:1 (Figure 3A), and native maize and wheat
pre-EF-Tu proteins reduced activase aggregation
by nearly 50% at a pre-EF-Tu:activase molar ratio
of 5.3:1 (Figure 3B,C). The E. coli chaperone
DnaK (Diamant et al., 2000) also showed a
protective effect against activase aggregation in a
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concentration-dependent manner (Figure 3D). In
contrast, BSA (1mM, Figure 3A; 2mM, Figure 3B,C)
provided no protection against activase aggregation.

The protective effect of pre-EF-Tu in reducing
thermal aggregation of rubisco activase was also
observed when solubility of activase was examined
at high temperature. Activase was highly soluble at
room temperature, as revealed by one-dimensional
SDS-PAGE analysis of soluble (supernatant) and
insoluble (pellet) fractions of centrifuged protein
(Figure 4). When activase was heated at 48 1C, most
of the protein became insoluble and appeared in
the pellet fraction of the protein sample (Figure 4).
However, when activase was heated in the pre-
sence of recombinant pre-EF-Tu, a considerable
portion of the activase protein remained soluble
(Figure 4, indicated by arrow), indicating a pre-
ventative effect of pre-EF-Tu on activase thermal
aggregation.

The observation of activase aggregation at high
temperature confirms previous reports on thermal
sensitivity of this protein (Feller et al., 1998;
Salvucci et al., 2001). Immunoblot analysis of
protein extracts from detached and heated leaf
tissue of wheat and cotton (Gossypium hirsutum)
showed formation of activase aggregates at ele-
vated temperatures (Feller et al., 1998). Similarly,
light-scattering experiments with purified tobacco
(Nicotiana rustica) activase revealed aggregation
of this protein at temperatures of 35 1C and higher
(Salvucci et al., 2001).

Our results demonstrating a protective effect of
chloroplast pre-EF-Tu against thermal aggregation
of activase support previous observations on the
chaperone activity of EF-Tu protein. As stated
earlier, the recombinant precursor of maize EF-Tu
was found to protect citrate synthase and malate
25°C                                      

   s        p       s       p       s      p       s       p  

    RCA           RCA+         EF-Tu         RCA     
                       EF-Tu                                        

Figure 4. Effect of recombinant pre-EF-Tu (EF-Tu) on solubi
trials, rubisco activase alone (RCA) and rubisco activase mi
45min. After incubation, soluble (s, supernatant) and insolubl
by centrifugation and were analyzed using one-dimensional S
R250. An increase in the amount of soluble activase was note
presence of pre-EF-Tu.
dehydrogenase from thermal aggregation (Rao
et al., 2004). Also, bacterial EF-Tu was observed
to suppress thermal aggregation of citrate synthase
(Caldas et al., 1998).

The present study sheds additional light on the
functional properties of chloroplast EF-Tu. It
demonstrates that both the native (Figure 3B,C)
and recombinant (Rao et al., 2004; Figure 3A)
precursor forms of this protein display chaperone
activity. Moreover, the ability of pre-EF-Tu from
wheat, a C3 species (Akita and Moss, 1972), to
protect maize activase from thermal denaturation/
aggregation suggests that the chaperone activity of
pre-EF-Tu may not be species-specific. Most intri-
guing, however, is the observation that pre-EF-Tu
can protect a heat-labile photosynthetic enzyme,
rubisco activase (Salvucci et al., 2001), from
thermal aggregation. It is possible that pre-EF-Tu
may play a role in protecting the photosynthetic
apparatus during high-temperature stress. Further
studies are needed to investigate this hypothesis.

The ability of chloroplast pre-EF-Tu to protect
rubisco activase from thermal aggregation supports
the hypothesis that the native mature form of this
protein plays a role in heat tolerance by acting as a
molecular chaperone. Native EF-Tu is localized in
chloroplast stroma (Momcilovic and Ristic, 2004)
and may protect chloroplast stromal proteins,
including activase, from thermal aggregation. This
hypothesis is supported by Momcilovic and Ristic
(2004) and Ristic et al. (2004), who observed a
negative correlation between endogenous levels of
EF-Tu and thermal aggregation of chloroplast
stromal proteins. Previous studies have also shown
that whole chloroplasts from maize lines that have
higher levels of EF-Tu are more heat stable than
those from low-level EF-Tu lines (Ristic and Cass,
       48°C 

     s        p       s       p 

       RCA+        EF-Tu
       EF-Tu 

 Pre-EF-Tu 

 RCA 

lity of rubisco activase at high temperature. In separate
xed with pre-EF-Tu were incubated at 25 1C or 48 1C for
e/aggregated (p, pellet) protein fractions were separated
DS-PAGE. Gels were stained with Coomassie Brilliant Blue
d (indicated by arrow) when it was heated at 48 1C in the
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1992, 1993; Ristic et al. 1996). In addition, a recent
study has shown that chloroplasts from a group of
wheat cultivars that accumulate more EF-Tu under
heat stress conditions display better thermal
stability than chloroplasts from a group of cultivars
that accumulate less EF-Tu (Ristic et al., 2007).

It could be argued that the chaperone activity of
pre-EF-Tu may be specific to this precursor protein,
rather than the mature form of EF-Tu, because of
the presence of a chloroplast targeting sequence
(Bhadula et al., 2001). It is formally possible that
the mature form of EF-Tu may not exhibit chaper-
one properties. Although we do not completely rule
out this possibility, there is evidence to suggest
that the native EF-Tu displays chaperone activity.
The precursor of EF-Tu has the ability to bind GDP
(Rao et al., 2004), as does native EF-Tu (Stanzel
et al., 1994), an indication that the targeting
sequence does not affect the functional properties
of this protein. In addition, the amino acid
sequence of eukaryotic EF-Tu is strikingly similar
to that of bacterial EF-Tu (Bhadula et al., 2001),
which is known to display chaperone activity
(Caldas et al., 1998). Moreover, the predicted
two-dimensional (SCRATCH servers; http://
www.igb.uci.edu/tools/scratch/) and three-dimen-
sional (Schwede et al., 2003) structures of pre-EF-
Tu are very similar to that of native EF-Tu, implying
that the functional properties of pre-EF-Tu and
native EF-Tu may be equivalent.

In conclusion, the results of this study indicate
that the native precursor of both wheat and maize
chloroplast EF-Tu displays chaperone activity, as it
reduced thermal aggregation of rubisco activase
in vitro. To our knowledge, this is the first
demonstration of chaperone activity of native
pre-EF-Tu and the first observation of thermal
protection of a photosynthetic enzyme, rubisco
activase, by this putative chaperone. The results
support the hypothesis that EF-Tu plays a role in
heat tolerance by acting as a molecular chaperone.
Further studies to determine the role of native
EF-Tu in protecting photosynthetic enzymes during
periods of heat stress in plants are warranted.
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